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Abstract 
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6>(7!3? often considered a geologic analog to the modern, rapid addition of carbon 
dioxide to the atmosphere.  The ability to assess the sensitivity of many rate-dependent 
climate change impacts, based on the PETM analogy, hinges critically on the PETM 
warming rate.  Current estimates of the PETM warming rate face considerable problems, 
for example, due to the nontrivial statistical challenges in accounting for the key known 
uncertainties in a mathematically sound way. 

Here we introduce a new method for quantifying the PETM warming rate recorded by the 
oxygen isotopes of single-specimen surface-dwelling foraminifera at Southern Ocean 
ODP Site 690.  We use Monte Carlo samples from the Bayesian predictive distribution of 
reconstructed climate histories to estimate the probability distributions of millennial 
temperature trends.  Our approach produces probabilistically sound hindcasts of the 
observations and the implied rates of change that comprehensively account for the 
combined effects of uncertainties in (i) proxy measurement, (ii) age estimates, (iii) long 
term rates of temperature change, (iv) the autocorrelated natural temperature variability, 
and (v) the conversion from proxy to temperature.  We test the sensitivity of the 
reconstruction to the choice of chronology by comparing the results derived from two 
independent chronologies, based on orbital cyclostratigraphy and extraterrestrial helium-
3 (3He) accumulation. 

We estimate the peak millennial-scale warming rate (at the onset of the PETM) as 1.4 
°C/kyr (with a 95% credible interval from -2.3 to 5.4 °C/kyr) using orbital chronology 
and 1.1 °C/kyr (95% credible interval from -2.5 to 4.9 °C/kyr) using 3He age control.  By 
comparison, a suite of IPCC AR4 AOGCM model projections for the 21st century predict 
ocean surface warming rates at the Southern Ocean site ranging from -4 to 14 °C/kyr, 
when extrapolated from century to millennial scale rates, with half of the models 
projecting rates of less than 3 °C/kyr.  Although the paleo-reconstruction method cannot 
resolve century scale changes, we conclude that Site 690 data support a PETM peak 
warming rate of a magnitude potentially comparable to (possibly only 2-3 times slower 
than) the rate of warming projected for the next century.  An unresolved caveat is 
whether the onset of the PETM at Site 690 is truncated due to a brief period of 
dissolution, leading to a spuriously high apparent rate of warming. 
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1. Introduction 

The PETM has been analysed extensively and is now cited as one of the best, if not the 
best, ancient analog for modern global warming [e.g., Zachos et al., 2001].  The PETM 
had a wide range of impacts on terrestrial and marine biotas, coinciding with the largest 
mass extinction event in the deep sea in the last 90 Myr (Tjalsma and Lohmann, 1983; 
Thomas, 1990).  Organisms inhabiting the sea surface, including planktonic foraminifera 
and nannoplankton, underwent a remarkable transient turnover driven by a combination 
of warming and changing resource availability (e.g., Kelly et al., 1996, 1998; Bralower, 
2002; Kelly, 2002; Gibbs et al., 2006; Agnini et al., 2007; Raffi et al., 2009; Bown and 
Pearson, 2009).  Terrestrial plants were characterized by wholesale but transient shifts in 
distribution as a result of warming and changing precipitation patterns (e.g., Wing et al., 
2005); terrestrial faunas also saw significant migration as a result of climate change and 
the development of land bridges (e.g., Clyde and Gingerich, 1998; Gingerich et al., 
2003). 

One key open question is, with the exception of deep-sea organisms, why this abrupt 
event caused so few permanent effects on fauna and flora?  Was it because the rates of 
warming, and, by assumption, the rates of niche replacement, were too sluggish?  Or was 
it because species living at that time were well adapted to a rapid change in their 
environment? 

This investigation explores the first question:  what was the rate of warming throughout 
the PETM?  In particular, what was the peak rate of warming and when did it occur?  
And, importantly, what measures of uncertainty, or what levels of statistical confidence, 
are attached to these estimates? Previous estimates of rates of carbon cycling and 
warming during the PETM are based on linear interpolation of data across segments of 
the event that are anchored by duration estimates (e.g., Zachos et al., 2003; Panchuk et 
al., 2008; Zeebe et al., 2009; Ridgwell and Schmidt, 2010; Cui et al., 2011).   The most 
widely cited estimates for the total warming are model based (e.g. Sloan and Thomas, 
1998), and do not lend themselves for dissecting the various stages of the event. 

Although questions about PETM warming rates are simply posed, answering them 
presents nontrivial methodological challenges.   Rate estimates must account for sources 
of error in both the reconstructed temperatures and in the chronology, and these errors 
may be correlated across time and space.  The data themselves are irregularly and 
sometimes sparsely sampled in time, and may record relatively abrupt environmental 
changes, confounding simple sliding window or smoothing approaches to derivative 
estimation. 
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Here we provide temperature rate estimates and comprehensive error analysis of the 
oxygen-18 (

! 

" 18O) temperature proxy during the PETM, recorded in single-specimen 
surface dwelling planktonic foraminifera sampled from a single ocean core, Southern 
Ocean Ocean Drilling Program (ODP) Site 690 (Thomas et al., 2002).   The oxygen 
isotope (!18O) temperature proxy data (Figure 1) are a classic depiction of the PETM 
event:  an abrupt, negative oxygen isotope shift coincident with a large negative carbon-
13 (

! 

" 13O) isotope excursion (CIE), consistent with global warming resulting from a large 
input of greenhouse gases to the atmosphere (e.g., Kennett and Stott, 1991; Dickens et al., 
1995; Bains et al., 1999; Panchuk et al., 2008; Zachos et al., 2008).  Single specimen data 
capture the range of environmental variability in the habitat of the surface-dwelling 
foraminifera; multi-specimen analyses (e.g., Kennett and Stott, 1991) fail to capture this 
variability.  However, single specimen analyses are more prone to the effect of sediment 
mixing by bioturbation.  Fortunately the magnitude of the CIE provides a means whereby 
reworked specimens can be identified (e.g., Kelly et al., 1996).  With the exception of a 
few specimens near 171 mbsf, there appears to be little reworking across the CIE at Site 
690. 

    

FIGURE 1:  Oxygen (left) and carbon (right) isotope measurements from the 
Site 690 core, extracted from single surface-dwelling foraminiferal specimens, as a 
function of depth (in meters below sea floor, mbsf) (replotted from Thomas et al., 
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2002).  The lower dashed line (“event”) indicates the location of the negative carbon 
isotope excursion (PETM event) visible in the right panel, coincident with an abrupt 
warming (negative oxygen isotope shift) visible in the left panel.  The upper dashed 
line (“?”) indicates a second apparent abrupt warming, following the PETM, which 
appears coincident with a positive carbon isotope excursion. 

The samples are dated using two independent chronologies, giving two separate rate 
estimates.  Although a single-core analysis neglects the (possibly dominant) uncertainty 
introduced by differing and possibly conflicting core chronologies, this simplification is 
partially ameliorated by the use of independent chronologies.  The approach is a 
methodological advance on rate estimation for individual cores, and is applicable to the 
data from any core, thus paving the way for future multi-site analyses. 

Our new methods are based on a “climate history” approach, wherein many hypothetical 
temperature time series consistent with the proxy data are reconstructed by a Monte Carlo 
sampling procedure.  The probability distribution assigned to these time series is obtained 
from a Bayesian inferential approach that learns from the proxy data while accounting for 
uncertainties appropriately.  An advantage of the climate history sampling method is that 
once the histories are generated, all statistical questions reduce to simple counting.  For 
example, if one wants to know the probability that the rate of temperature change 
exceeded a particular value at a particular time, it suffices to merely count the fraction of 
the temperature histories in the sample that exceed the rate in question. 

The climate history method accounts for uncertainties in rate due to a variety of possible 
error sources.  We consider errors due to measurement error in temperature proxies, 
along with other unattributed sources of error in the proxy data, and uncertainty in the 
proxy-temperature relationship.  The proxy errors may be correlated in time, with an 
unknown correlation time scale estimated from the data.  The underlying long-term trend 
may undergo abrupt changes; the changepoints are estimated from the data as well.  In 
addition to an overall sensitivity analysis to the type of chronology used, the statistical 
method also accounts for errors in the ages of individual proxy samples. 

2. Chronology 

Given the importance of understanding the causes and consequences of the PETM, 
especially as they compare to modern climate change, there has been considerable 
attention paid to estimating the detailed chronology of the event. Two fundamentally 
independent approaches have been applied to determine the duration of various stages of 
the event as defined by the carbon isotope excursion, including the onset (the point where 
!13C values begin to decrease), the peak (the interval corresponding to the lowest !13C 
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values), and the recovery (the interval where !13C values increase towards pre-PETM 
values).  The first technique applies orbital stratigraphy (e.g., Norris and CD%), 1999; 
CD%) et al., 2000; CD%) et al., 2007; Charles et al., 2011).  This technique is based on 
counting the number of orbital cycles in continuous time series (usually elemental data) 
from the PETM interval and constraining the periodicity of these cycles (using time 
series analysis).  The major uncertainties associated with this method derive from 
determining the exact number of cycles where these variations are equivocal, and, more 
problematic, from  “burn down” (e.g., Walker and Kasting, 1992) that has removed 
existing sediment at the base of the event in several sections via an interval of intense 
dissolution (e.g., Zachos et al., 2005).  Also, identification of the termination of the event 
can be quite subjective due to the asymptotic shape of the !13C curve in the recovery 
interval.  

The alternate dating technique is based on measurement of helium-3 (3He), an isotope 
that is almost entirely derived from extraterrestrial sources.  A small amount of 3He is 
terrestrial in origin, but this source has very different 3He/4He ratios from extraterrestial 
helium and can be readily identified.  Extraterrestrial 3He is assumed to accumulate at the 
Earth’s surface at a constant rate (e.g., Ozima et al., 1984) and its concentration is thus a 
function of the amount of dilution by sediment (i.e. a measure of sedimentation rate).  
This technique is dependent on determining the sediment accumulation rate of some 
interval in the section.  In the case of the PETM, the accumulation rate is estimated from 
the duration of Chron C24R (e.g., Farley and Eltgroth, 2003). 3He chronology is affected 
in a different way as a result of burn down than is orbital chronology. Removal of section 
at the base of the event will not alter the total duration of the interval studied; however, 
“burn down” will shift the position of the base of the event to a lower stage in the relative 
3He chronology (see below). 

We analyze data from ODP Site 690, a location that is generally recognized to have more 
continuous deposition at the base of the PETM than other deep-sea sections.  Site 690 
was shallow enough that it remained above or within the lysocline for the entire event, 
whereas most other deep-sea sites lay below the CCD for a short time at the onset of the 
event (Kelly et al., 2005; Colosimo et al., 2005; Zachos et al., 2005), so chronologies 
based on this section are likely to be more precise than other deep sea sites.  Moreover, 
the occurrence of precessional cycles at Site 690 demonstrates that sedimentation rates 
are higher than in other deep-sea locations where only eccentricity cycles can be 
identified (e.g., Shatsky Rise, ODP Leg 198; Westerhold et al., 2008). The PETM 
corresponds to 11 precessional cycles at Site 690 (Rohl et al., 2007) with 5 cycles 
corresponding to the onset and peak (~100 kyr) and 3.5 cycles (~70 kyr) within the 
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recovery.  The latter number is a little uncertain given that the top of the !13C excursion 
lies in a coring gap.  By comparison at Forada, a hemipelagic section from the Southern 
Alps of Italy, there are 11 precessional cycles within the PETM with 5 cycles in the onset 
and peak (100 kyr) and 6 cycles within the recovery (120 kyr; Giusberti et al., 2007). 

Using 3He isotope measurements, Farley and Eltgroth (2003) constrained the onset and 
peak of the PETM at Site 690 to 80 kyr and the recovery to 30 kyr.  This estimate of the 
recovery is much shorter than estimates using cyclostratigraphy, however, the duration of 
the onset and peak are relatively similar for Site 690 and the Forada section based on 
cyclostratigraphy (Giusberti et al., 2007; Rohl et al., 2007) and 3He (Farley and Eltgroth, 
2003).  In a recent investigation by Murphy et al. (2010), 3He measurements at Site 1263 
indicated much longer durations for every stage of the PETM, most significantly the 
onset of the event (35 kyr).  Burn down at this site likely lowered the CIE below its true 
stratigraphic position, artificially lengthening the duration of the onset of the PETM (B. 
Murphy, pers. comm., 2011). 

The base of the PETM at Site 690 is sharp and the onset of the CIE corresponds to just 
three cm of sediment (Thomas et al., 2002). This amount is well within one precessional 
cycle. Although increased dissolution at the base of the event is likely, two pieces on 
information render it unlikely that such dissolution progressed far enough to cause “burn 
down”: carbonate content remains above 60% throughout the event, and a sequence of 
isotopic and biotic changes is preserved in the interval 10-20 cm below the CIE (Thomas 
et al. 2002; Bralower et al., 2002; Kelly et al., 2002).  Burn down would presumably 
result in an interval without carbonate and would tend to focus the isotopic and biotic 
change.   Since burn down has different effects on orbital and 3He age models, it can also 
theoretically be identified by comparing the two age models.  

Figure 2 explores the consistency between the orbital and helium dating methods.  The 
left panel shows all age data available for Site 690 as a function of depth, including 
periods of time for which no foraminiferal specimens are available (i.e., outside the range 
of depths depicted in Figure 1 and analyzed in this study).  The right panel shows a plot 
of helium age vs. orbital age for the period of time depicted in Figure 1.  One way burn 
down could manifest itself is in a cusp or discontinuity in these curves.  For example, if 
some section is missing due to burn down, causing the cyclostratigraphic method to miss 
a cycle, this could manifest as a sudden apparent jump in helium age relative to orbital 
age (as the extraterrestrial helium continues to accumulate).  No such features are visible 
in Figure 2.  This does not prove that imperceptibly small intervals of the core are 
missing, but does provide some confidence in validity of the chronologies. 
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FIGURE 2:  Comparison of orbital and helium chronologies.  Left:  orbital 
and helium ages plotted as a function of core depth below sea floor.  The shaded 
region indicates the range of ages considered in the present study.  The dashed lines 
are the features (CIE “event”, and a unknown possible event “?”) indicated in 
Figure 1.   Right:  scatterplot of helium vs. orbital ages. 

3. Methods 

We next outline the general method in conceptual terms, and discuss key assumptions, 
motivation, and interpretation.  A fully mathematical treatment of the statistical methods, 
and the parameter estimates which result, is contained in the Supplementary Material. 

The combined temperature reconstruction and error analysis is based on the statistical 
technique of Bayesian Gaussian process regression [see Rasmussen and Williams (2006) 
for a review], which is used in combination with Monte Carlo simulation to reconstruct a 
large sample of possible “climate histories”.  The imputed climate histories are regularly 
spaced in time, permitting the application of simple sliding-window linear derivative 
estimates to determine rates over time.  The imputation process incorporates uncertainty 
into the analysis by matching the variability in the reconstructed climate histories to the 
variability present in the core data.  The uncertainty in the temperature rate is given by 
the spread of rates found in the collection of climate histories. 

The four-part statistical method is summarized in Figure 3. 
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FIGURE 3:  Schematic depiction of the statistical temperature 
reconstruction method; each panel corresponds to a step discussed in Section 3.  
Ages are determined by orbital chronology. 

Step 1. 

In the first step, a piecewise linear regression is fit to the 
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" 18O temperature proxy data.  
The linear model is constructed to have three periods of gradual linear temperature 
change, divided by two periods of rapid change.  This structure reflects two changepoints 
that are apparent in the proxy data.  The earlier changepoint corresponds to the PETM 
event, and is coincident with the negative carbon isotope excursion (Figure 1).  The later 
changepoint corresponds to further warming apparent in the Site 690 data, ~30-60 kyr 
after the original event (depending on chronology).  In addition to the linear slopes and 
intercept coefficients, the regression also estimates the changepoint locations, although 
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they are constrained by their prior distributions to lie within 5 kyr of their apparent ages.  
Four changepoint locations are estimated, with a pair of changepoints immediately 
preceding and following each of the two periods of abrupt temperature change. 

The error process in the linear regression model is the sum of an independent and 
identically distributed (iid) normal error process and a temporally autocorrelated normal 
error process, decaying exponentially with time.  The former represents measurement and 
other unresolved proxy errors, while the latter represents correlated natural variability in 
climate.  The iid and correlated error variances and the correlation timescale are 
estimated along with the regression coefficients and changepoints. 

The Bayesian parameter estimation procedure assigns a full joint probability density 
function to the unknown parameters, not simply point estimates or confidence intervals.  
The Metropolis Markov chain Monte Carlo (MCMC) algorithm is used to sample from 
the joint posterior probability distribution of the unknown parameters.  The resulting 
sample represents candidate hypotheses for the possible values of the parameters, with 
more probable values appearing more frequently in the sample.  The set of parameters, in 
turn, generates many candidates for piecewise linear fits to the data.  The first panel in 
Figure 3 shows the mean (solid line) and 95% predictive envelope (dashed lines) for the 
posterior sample of linear fits. 

Step 2. 

The fits in the first step of the reconstruction method are all piecewise linear.  The second 
step uses Gaussian process regression to condition each sample reconstruction on the 
measured data.  This allows the fits to adapt locally to the data in a nonlinear manner.  
Figure 3 (second panel) shows the resulting mean and predictive envelope for the sample 
of conditional reconstructions. 

Step 3. 

The third reconstruction step samples random “proxy histories” from the predictive 
envelope computed in the second step.  This amounts to superimposing random noise 
realizations from the iid and correlated error processes onto the fits from the second step.  
This serves to interpolate the proxy data onto a regular temporal grid.  Each proxy history 
is a candidate for what the measured 
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" 18O would be at a series of evenly spaced points in 
time, if foraminiferal specimens from those dates existed in the core sample, accounting 
for natural climate variability and proxy measurement error.   The histories vary in terms 
of their generating parameters sampled in the first step, so that each history may have a 
different underlying piecewise linear mean function, set of changepoint locations, and 
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error variance and autocorrelation.  A sample proxy history is shown in Figure 3 (third 
panel). 

Step 4. 

The fourth reconstruction step converts the proxy histories to temperature histories.  The 
usual proxy conversion procedure fits a regression of temperature vs. proxy to a set of 
calibration measurements of laboratory-grown foraminifera (Erez & Luz, 1983).   The 
proxy data and fit are given in Supplemental Figure 3.  The regression is used to predict a 
new temperature given a new proxy measurement.  This common procedure is, however, 
statistically problematic.  A regression of temperature on proxy treats temperature as the 
dependent variable and proxy as the independent variable.  However, in the experimental 
calibration data, temperature is the controlled variable, and proxy is the measured 
variable.  Reversing the distinction between dependent and independent variables, while 
convenient, violates the statistical assumptions of the regression.  This can produce 
regression estimates that are biased (Durbin, 1954) — a phenomenon sometimes known 
as “regression dilution” — as well as incorrect uncertainty intervals 

Although we have not assessed the importance of these potential problems to inferring 
temperatures from proxy data, we opt to apply a more formally correct statistical 
procedure known as “calibration” or “errors in variables” regression [see Osborne (1991) 
for a review].  This calibration method treats temperature as the controlled variable and 
the proxy as the response variable, but allows for errors to exist in the control variable, 
instead of in the response variable as in ordinary regression. 

Bayesian errors-in-variables calibration produces a probability distribution for the 
predicted temperature corresponding to a proxy measurement.  The final reconstruction 
step, in Figure 3 (fourth panel), samples a random temperature from this distribution for 
each hypothetical proxy measurement to turn a proxy history into a temperature history.  
Each temperature history represents a hypothesis for what the temperature would be at 
each time, were such a measurement possible, accounting for the error in measurement 
(including the proxy-temperature conversion).  It is important to note that the resulting 
temperature histories represent hypothetical temperature measurements, including 
measurement error, and not the underlying “true” temperatures.   The inclusion of 
temperature error increases the uncertainty about warming rates beyond the rate that 
would be calculated if only the most likely temperature for each proxy value were 
assumed. 

Short term trends. 
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The end result of the reconstruction process is a sample of temperature histories 
interpolated onto a regular grid.  Because the imputed temperatures are evenly spaced in 
time, ordinary least squares estimates of short-term temperature trends can be 
consistently applied to provide temperature rate estimates over any desired time window. 
Our approach uses samples from the Bayesian predictive temperature distribution to 
generate the replicates, which in turn is used to produce a sample-based quantification of 
the uncertainty in the short-term temperature rates at any given time.  This Monte Carlo 
method may be thought of as the Bayesian analogue of a parametric bootstrap (see, e.g., 
Efron and Tibshirani, 1994).  A sliding 21-point window of width 1 kyr is passed over 
each temperature history to compute the short-term temperature rates over time.  (The 
trend indicated in Figure 3 is for a >6 kyr window, exaggerated for visual clarity.)  When 
applied to the entire sample of temperature histories, the resulting sliding window 
estimates constitute a posterior probability distribution for the short-term temperature 
rates at any given time. 

Age uncertainty. 

Age uncertainty has been ignored thus far in this discussion.  To account for dating 
errors, error-in-variables regression is applied in the first step.  This simultaneously 
accounts for errors in both the proxy values and the proxy dates.  In addition to the 
regression parameters estimated in the first step, the errors-in-variables regression 
estimates a set of latent “true ages” corresponding to each of the measured ages from the 
core chronology.  It is assumed that foraminiferal specimens at the same depth share the 
same latent age.  Sediment bioturbation likely violates this assumption, but the 
assumption renders the regression more computationally tractable by reducing the 
number of unknown parameters to estimate.   The resulting latent age estimates are used 
in all of the subsequent steps to produce the proxy and climate histories:  when 
generating a history, the proxy data are assumed to be located at their estimated latent 
ages, rather than their measured ages.  The errors-in-variables regression for the latent 
ages imposes an ordering constraint, so that specimens deposited higher in the core must 
have younger ages than deeper specimens. 

4. Results and Discussion:  PETM temperature reconstruction 

4.1 General findings. 

The distribution of reconstructed temperature histories is shown in Figure 4 for the two 
chronologies, with the proxy data (converted to temperature) overlaid.  The figure can be 



! "@!

interpreted as all the temperature histories superimposed on top of each other, with the 
darkness of shading representing the density with which temperature histories pass 
through a given point.  Figure 5 shows a section of the reconstruction in the vicinity of 
the PETM event.  As expected (indeed, by design), the reconstructed temperatures are 
centered near the data and the uncertainty intervals approximately span the variability 
seen in the data.  The uncertainty intervals widen outside the span of the data, when the 
reconstruction is extrapolating instead of interpolating. 

 

FIGURE 4:  Probability distribution of reconstructed temperature for 3He 
and orbital age models with respect to age (before present).  Darker shading 
corresponds to higher probability.  The blue solid and dotted lines are the posterior 
mean and 2.5/97.5% credible intervals.  The red crosses represent the Site 690 
oxygen isotope data (with ±1"  measurement error bars indicating prior 
uncertainty, neglecting proxy-temperature conversion uncertainty).  The dashed 
vertical lines represent the negative carbon isotope excursion (CIE). 
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FIGURE 5:  A subset of Figure 4 centered on the carbon isotope excursion.  
Time is relative to the negative carbon isotope excursion (“event”). 

The mean temperature reconstruction shows warming before the negative carbon isotope 
excursion, with about half of the overall PETM warming occurring about 5 kyr prior to 
the CIE.  From the raw data alone (Figure 1, left panel), it is unclear whether this is true 
warming or random variation.  The statistical reconstruction suggests it is, indeed, true 
warming. Note that this warming signal is considerably before the single specimens that 
also show pre-CIE warming (Thomas et al., 2002).  A warming event preceding the CIE 
is in accordance with theories suggesting that the CIE was triggered by pre-PETM 
environmental change  (e.g., Thomas et al., 2002; Kelly et al., 2002; Sluijs et al., 2007; 
Carozza et al., 2011).  The amount of warming from pre-event minimum to post-event 
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maximum is 6.6 ± 3.2 °C (

! 

1" errors), consistent with the 5.8 °C found by the independent 
Mg/Ca temperature proxy at Maud Rise Site 690B (Schmidt et al., 2008). 

A puzzling feature of the data, visible but not discussed in Thomas et al. (2002), is a 
second period of warming recorded in the surface-dwelling foraminifera (indicated by 
“?” in Figure 1).  This warming coincides with a positive shift in carbon isotopes (Figure 
1, right panel), suggesting a drawdown of atmospheric carbon during the recovery from 
the initial PETM event.  It is unclear why a second period of warming exists, nor why 
warming would be associated with a decrease in atmospheric carbon.  Although this 
study only studies the surface foraminiferal data from Site 690, the data in Thomas et al. 
(2002) do not show a corresponding change in !13C or !18O in the thermocline-dwelling 
planktonic specimens.  The thermocline data in Thomas et al. (2002) do indicate a second 
period of warming, but is smaller and occurs later than the second period of warming in 
the surface specimens.  The thermocline warming is also somewhat inconsistently 
recorded, with roughly half the specimens showing no warming. 

4.2 Uncertainty intervals. 

The uncertainty intervals (95% Bayesian credible intervals) in the reconstruction (Figure 
3) appear too wide at times after the PETM event, comfortably enclosing all of the data 
instead of 95% of it.  This is likely a consequence of assuming a stationary covariance 
distribution for the error process, i.e., that the errors are of the same size at all times. The 
data suggest a possible brief warming excursion about 15–25 kyr before the event, 
depending on age model (most visible in Figure 5, or in Figure 1 at 171.03–171.14 mbsf).  
These “outliers” (not to be confused with the smooth pre-PETM warming, ~5 kyr before 
the onset, discussed in the previous section) inflate the estimated overall variance of the 
time series, which is propagated to a wider uncertainty interval everywhere in the 
reconstruction.  Conceivably these outliers do not represent a true climate change, but 
result instead from bioturbation of specimens from the PETM event downward in the 
sediment column.  However, it is difficult to see how bioturbation could mix specimens 
so far without evidence of mixing at later times before the event. 

In our analysis we choose to treat the outlier data as a real climate event and incorporate 
it into the analysis, rather than discarding it.  This is a conservative choice, insofar as it 
may tend to inflate the estimated natural climatic variability and therefore the uncertainty 
in short term rates. If the data represent a real climate event, this variation can be handled 
statistically in two different ways.  One is to treat the variability in the data as constant in 
time.  Under this stationarity assumption, the pre-PETM “outliers” may imply a large 
uncertainty in temperature at later times (such as at the onset of the event), on the 
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grounds that such temperature excursions may repeat themselves later even if not clearly 
reflected in the data.  The second approach is to treat natural variability as non-stationary 
(changing with time), so that variation in early times may not imply similar variation at 
later times.  Statistics alone cannot determine which approach is more appropriate, as the 
nature of climatic variability involves scientific judgement.  We choose to use the 
stationary variance assumption, but briefly discuss the merits of some alternate 
approaches, using hierarchical modeling, in the Supplementary Material. 

4.3 Effects of age uncertainty. 

Assumptions about age uncertainty affect the reconstructions (Figures 4 and 5).  The 
reconstructions in Figures 4 and 5 include this age uncertainty, examining the sensitivity 
to the chronology used.  Orbital dating, in general, favors a more rapid warming event 
and an overall shorter duration of time spanning the core data.  This could be due to a 
combination of a short pulse of dissolution at the onset of the CIE combined, possibly 
with sediment burndown. However, within a given chronology, it is also informative to 
explore the sensitivity of the reconstruction to whether individual dates themselves are 
considered to be uncertain. This sensitivity analysis is shown in Figure 6 using the orbital 
chronology, comparing the reconstruction with age uncertainty to an alternate 
reconstruction in which the measured ages of the specimens are assumed to be their true 
ages, without error.  The sensitivity analysis indicates that when errors in individual age 
estimates are allowed, the temperature reconstruction is smoothed in time, reducing the 
estimated PETM warming rate.  The estimated latent ages and their uncertainties are 
shown in Supplemental Figure 4. 
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FIGURE  6:  Posterior mean temperature reconstruction including (solid 
line) and excluding (dashed line) uncertainty in individual ages, both using orbital 
dating.  Gray crosses are the Site 690 data with an assumed 0.08‰ prior proxy 
uncertainty (neglecting proxy-temperature uncertainty) and 5 kyr prior age 
uncertainty. 

5. Results and Discussion:  PETM and modern warming rates 

A simple calculation of the maximum PETM warming rate can be made from the step 1 
linear regression slope estimate for the first abrupt period (coincident with the onset of 
the PETM and the CIE).  The marginal posterior distribution of this parameter has a mean 
of -579 ‰/Myr (-2131 to -122 ‰, 95% ci) for orbital dating or -670 ‰/Myr (-1590 to -
106 ‰, 95% ci) for helium dating (see Supplemental Figures 1 and 2 for the probability 
distributions of this parameter, labeled mtrans1).  Assuming a conversion factor of 4.52 
°C/‰ (see SI), the corresponding temperature rates are 2.6 (-0.6 to 9.6, 95% ci) °C/kyr 
for orbital dating and 2.0 (-0.5 to 7.2, 95% ci) °C/kyr for helium dating.  The similarity of 
the rate estimates based on orbital and 3He chronology suggest to us that dissolution and 
sediment burndown at Site 690 are both minimal. 

Warming rate estimates depend on estimates of both the amount and duration of  the 
warming interval.  Although we have focused on how biases in chronology may affect 
the estimated warming rates, it is also worth considering whether the oxygen temperature 
proxy accurately reflects the magnitude of warming.  Biases can occur, for example, if 



! "F!

the ocean salinity varies throughout the event.  As an independent check, we consider the 
Mg/Ca temperature proxy, which implies a ~5.8 °C warming across the event (Schmidt et 
al., 2008).  This comparable to the ~6.6 °C warming found in this study (Figure 5), 
corresponding to an additional ~10-15% uncertainty in warming rates due to choice of 
temperature proxy.  This source of uncertainty is omitted from subsequent analysis, but 
should be borne in mind. 

The simplified warming rate calculation reduces the onset warming to a linear trend, and 
the uncertainties reported are errors in the linear trend, not in the actual reconstructed 
temperature time series, which is noisy and nonlinear.   A linear trend estimate captures 
the average rate over the duration of the event, but is less suited to estimating the peak 
(maximum) rate of warming.  The full “climate history” approach is able to give a more 
nuanced, and time-dependent picture of how temperature rates evolved over time.  
Henceforth we consider the climate history approach to estimating the peak warming rate 
during the PETM event. 

The peak PETM temperature rate distribution is calculated by first finding the time at 
which the mean short-term (1 kyr) rate, averaged over all the temperature histories, 
achieves its maximum value.  Then a histogram is constructed of the short-term 
temperature rate, calculated at that time, for each temperature history.  This distribution is 
estimated for both chronologies (orbital and helium). 

The peak PETM rate distributions (and mean and 95% Bayesian credible intervals) are 
displayed in Figure 7.  The mean peak PETM millennial-scale warming rate is estimated 
to be 1.4 °C/kyr, with a 95% Bayesian credible interval of -2.3 to 5.4 °C/kyr, using 
orbital chronology.  The mean peak rate is slightly lower when using helium dating, 1.1 
°C/kyr, with a 95% interval of -2.5 to 4.9 °C/kyr.  These rate estimates are lower than the 
prediction of the simple regression slope calculation presented earlier. 

Interestingly, the climate history uncertainty intervals for the peak warming rate are 
narrower than the uncertainty intervals computed using the linear slope method.  One 
might expect them to be wider, since the climate histories contain natural temperature 
variability about the overall linear trend, and include uncertainty in conversion from 
proxy to temperature.  These uncertainties are not considered by the linear slope 
approximation.  However, the climate histories also condition on the observed proxy 
data, so that the histories are forced to conform more closely to abrupt transitions in the 
data that may be averaged over by a linear regression, thus leading to sharper estimates.  
Also, the regression slope distribution is highly skewed due to an inability to exclude 
effectively infinite rates with all warming occurring in an arbitrarily short time between 
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data points (see Supplemental Figures 1 and 2).  In the climate history approach, the long 
correlation time of the natural temperature variability may preclude instantaneous 
warming from occurring in the sample paths even when it occurs in the underlying linear 
trend, excluding some of the high upper tail of the warming rate.  

 

FIGURE 7:  Posterior probability distributions for the peak PETM warming 
rate using orbital (“O”) and helium (“H”) dating.  The mean and 95% credible 
intervals are reported below the curves as circles and lines, respectively.  Above the 
curves are the mean and 95% confidence intervals for the 21st century warming 
rates projected by 12 AOGCMs.  The numbers refer to the GCMs in the legend of 
Figure 8. 

Nevertheless, the peak PETM warming rate uncertainty intervals arising from the climate 
history method are quite wide:  they are several times larger than the mean trends 
themselves, and cannot exclude the possibility of short-term cooling.  This might be 
expected from the great uncertainty in reconstructing temperatures over short time scales 
from limited data.  As such, any comparison of PETM warming rates to modern rates 
should be made with caution.  We proceed, noting that we are comparing millennial-scale 
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PETM warming rates to centennial-scale future warming projections.  This should not be 
taken to imply that 21st century warming rates will be sustained over the next millennium. 

To compare the PETM to future modern warming rates, annual temperature projections 
for the 21st century are collected from atmosphere-ocean general circulation models 
(AOGCMs) that have been used in the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change [cf. Meehl et al, 2007a], and accessed from 
the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison 
Project phase 3 (CMIP3) multi-model dataset (Meehl et al., 2007b).   We analyze model 
runs forced with the SRES A1B emissions scenario (Naki!enovi! et al., 2000).  The 
temperature time series are extracted from a location representative of the proxy data 
considered in this study:  they are taken from the grid cell in each model nearest 65 °S 
latitude, 1 °E longitude, the approximate drilling location of ODP Site 690, and averaged 
over the upper 100 meters of the ocean, since the proxy data are from surface-dwelling 
foraminifera with a habitat limited to the photic zone (D’Hondt et al., 1994).  The drift-
corrected temperature projections are displayed in Figure 8, with the corresponding 
models labeled in the figure legend. 

 

Figure 8:  Projected 21st century temperature anomalies from twelve IPCC-
class AOGCMs in the surface ocean near ODP Site 690. 

The projected warming rate and 95% (frequentist) confidence interval are calculated from 
each time series by a generalized least squares fit of an AR(2) autoregressive process 
with linear trend.  They are indicated in Figure 7 above the PETM rates.  The GCMs 
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project rates from -4 °C/kyr (-0.4 °C/century), actually a cooling, to 14 °C/kyr (1.4 
°C/century).  The average rate over all model projections is 5.0 °C/kyr and half of the 
model projections rates are less than 3 °C/kyr, compared to the mean peak rates of 1.1 or 
1.4 °C/kyr found during the PETM (with helium or orbital dating, respectively).  Thus, to 
the extent that PETM and modern warming rates can be compared by this method, the 
PETM warming indicated by the Site 690 data is within a factor of 2 or 3 of the rates 
predicted projected by a number of the GCMs considered, about 4 times slower than the 
mean GCM projected rate, and is no more than 10 times slower than the highest GCM 
rate considered here. 

The Site 690 chronologies applied here suggest a substantially briefer PETM onset than a 
detailed new chronology derived from an expanded core from Spitsbergen (Charles et al., 
2011; Cui et al., 2011).   This core indicates an onset duration of ~19 kyr, more than 
double the onset at Site 690.  As we have discussed, the Site 690 core could be truncated 
by dissolution and possibly further condensed by burndown, implying a shorter event 
duration and thus an upwardly biased rate of warming. 

6. Conclusions 

Was the warming rate during the Paleocene-Eocene Thermal Maximum comparable to 
projected future rates?  We have developed a statistical method to reconstruct rates of 
temperature change during the PETM.  The method accounts for uncertainties in proxy 
measurement, natural climate variation, age, and the proxy-temperature relationship. 

We find a best estimate of the peak surface ocean warming rate during the PETM at ODP 
Site 690 to be 1.1 or 1.4 °C/kyr, depending on the chronology used (helium and orbital 
dating, respectively).  There is, however, a wide statistical uncertainty about this rate, 
ranging from -2.5 to +5.4 °C/kyr.  The PETM warming rates are within the range of 
twelve IPCC-class climate model projections, which estimate a 21st century warming rate 
of -4 to 14 °C/kyr when extrapolated from century to millenial scale rates.  Half the 
models showing a warming of less than 3 °C/kyr, comparable in magnitude to the PETM 
peak warming rate.  We conclude that the Site 690 data support, but do not demonstrate, 
a warming rate comparable to likely future climate change. 

The comparison of paleo and modern warming rates should be viewed cautiously.  Future 
global warming will likely transpire over the course of a few centuries, and the proxy 
data considered here do not have the power to fully resolve peak paleo warming rates on 
century time scales.   A more complete comparison will require application of the 
technique described in different locations combined with continuing investigations of the 
chronology of the onset of the PETM.  
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Supplementary Material for “A statistical interpretation
of surface ocean temperature trends during the

Paleocene-Eocene Thermal Maximum”

A Data

The data discussed in this paper are included as online supplementary material in the fol-
lowing text files:

1. odp690 chronology.txt. Site 690 chronology. 3 columns: depth (meters below sea
floor), orbital age (Mya), 3He age (Mya)

2. odp690 d18O.txt. Site 690 oxygen isotope data (temperature proxy). 5 columns:
depth (meters below sea floor), orbital age (Mya), 3He age (Mya), δ18O (!, PDB),
estimated temperature (◦C) (see Section B.3).

3. odp d13C.txt. Site 690 carbon isotope data. 4 columns: depth (meters below sea
floor), orbital age (Mya), 3He age (Mya), δ13C (!, PDB).

4. temp d18O.txt. Calibration data for the proxy-to-temperature conversion from Erez
& Luz [2]. 3 columns: temperature (◦C), relative δ18O (!), PETM δ18O (!) (see
Section B.3).

5. gcm 21cen temperature.txt. 21st century AOGCM ocean temperature projections
at the Site 690 location. 13 columns: year, and 12 AOGCM temperature time series
(◦C) (as given in Figure 8 of Section 5).

The chronology file contains information for depths/ages not considered in the temper-
ature reconstruction analysis, either because temperature proxy data or age estimates for
both chronologies were not available at those depths.

The second column of the calibration data file contains the original proxy data. The
third column contains gives PETM-commensurate proxy values by shifting the calibration
data by −1.25!, to correct for differences between modern and PETM seawater isotopic
composition.
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B Methods

Let y = {yi} (i = 1, . . . , n) be the vector of δ18O proxy measurements (in !), and t = {ti}
be the corresponding vector of ages (in Ma), where n = 252 is the number of measurements.
Since there may be multiple specimens for each date, some individual dates are repeated in
t. There are 63 unique dates.

The proxy and age vectors are partitioned into five blocks of length npre, ntrans1, nev,
ntrans2, npost. The pre block defines the period of time that occurs before the rapid PETM
event warming. The trans1 block is the PETM event onset. The ev block is the subsequent
period of elevated temperatures resulting from the event, and post is the recovery after
the event. Following ev and before post is another temperature transition period that is
suggested by the data. The partition locations are estimated from the oxygen isotope data
by changepoint analysis, as discussed below. Because the partition locations (changepoints)
may vary, the block sizes are not necessarily constant.

The statistical analysis consists of four steps:

1. Fit a regression to the irregularly spaced time series data, estimating the Bayesian
uncertainty in the regression parameters and data ages using Markov chain Monte
Carlo (MCMC) sampling.

2. Simulate Monte Carlo replicates of the proxy posterior predictive distribution interpo-
lated onto a regular, higher resolution grid, representing “proxy histories”.

3. Convert the proxy histories to “temperature histories” by inverse regression (proxy-
temperature calibration), propagating the uncertainty in the calibration process.

4. Estimate short term trends and standard deviations from sliding window subsequences
of the temperature histories.

B.1 Bayesian regression

To improve the clarity of exposition, the discussion below will assume that the data ages
(t) are known with certainty. This assumption will be relaxed in Appendix B.5, and the
analyses reported in the main text allow the ages to be uncertain.

The proxy time series y(t) is modeled as a sample path from a Gaussian process with
mean function µ(t;θ) and covariance function c(t, t′;φ) with regression parameters θ and
covariance parameters φ,

y|θ,φ ∼ GP [µ(t;θ), c(t, t′;φ)] . (1)

Here and henceforth the notation x|y or [x|y] represents the probability density function
π(x|y).

2



The mean function is continuous piecewise linear across the five periods of time,

µ =






Yi −mpre(t− ai) , t > ai
Yi −mtrans1(t− ai) , ai ≤ t < at1
Yi −mtrans1(at1 − ai)−mev(t− at1) , at1 ≤ t < at2
Yi −mtrans1(at1 − ai)−mev(at2 − at1)−mtrans2(t− at2) , at2 ≤ t < af
Yi −mtrans1(at1 − ai)−mev(at2 − at1)−mtrans2(af − at2)−mpost(t− af ) , t ≥ af

,

(2)
where the regression parameters θ = {mpre,mtrans1,mev,mtrans2,mpost, Yi, ai, at1, at2, af} are
five slopes (!/My) and an intercept term (!), plus the ages of the event initiation and
recovery and the two transition times (Ma), which obey an ordering constraint (ai > at1 >
at2 > af ). All are regarded as uncertain parameters in the analysis.

The covariance function is stationary exponential with a nugget term, defining a contin-
uous autoregressive process,

c(t, t′; σ, τ,ψ) = σ2 exp[−|t− t′|/(1000τ)] + ψ2δ(t− t′) , (3)

where σ2 is the process variance, τ is a temporal autocorrelation length (in ky), ψ2 is the
nugget variance, and δ(·) is the Dirac delta distribution. The exponential correlation rep-
resents coherence in proxy (or temperature) fluctuations over time. The nugget represents
the non-temporal spread in proxy values measured at the same depth, due to factors such
as measurement error and between-foram variability. Because replicate measurements ex-
ist (multiple specimens at the same depth and presumed age), it is possible to separately
identify the nugget and exponential process variances.

All of the parameters θ,φ are uncertain and in a Bayesian framework must be estimated
probabilistically. By Bayes’s theorem, the posterior distribution of these uncertain parame-
ters is given by

θ,φ|y, t ∝ [y|θ,φ, t][θ,φ|t] . (4)

where p(y|θ,φ, t) is the likelihood of the data conditional on the parameters and age, and
p(θ,φ|t) is the prior probability distribution of the parameters conditional on age.

By Eq. 1, the likelihood of a finite vector of data is a multivariate normal distribution,

π(y|θ,φ, t) = 1√
(2π)n detΣ

exp

[
−1

2
(y − µ)TΣ−1(y − µ)

]
, (5)

with mean vector µ = µ(t;θ) and covariance matrix Σij = c(ti, tj;φ), where the Dirac delta
in the nugget term of Eq. 3 is replaced by a Kronecker delta.

The estimated parameters Θ = (θ,φ) are collectively assumed to be independent of
time and of each other, so that π(θ,φ|t) =

∏
k π(Θk), k = 1, . . . , 13. The linear rate

parameters {mpre,mtrans1,mev,mtrans2,mpost} are given normal N(0, 55002) priors, where the
5500 !/My uncertainty corresponds to an assumed ±2.5 ◦C/century uncertainty in the long
term temperature trend, so it is ∼95% likely that the trend falls within a ±5 ◦C/century
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range. This assumes a proportionality of 4.52 ◦C/! (see Appendix B.3). The intercept
parameter Yi has a uniform prior. The changepoint ages are given normal priors. The ai and
at1 changepoints have priors ∼ N(Ti, 0.0052), centered on the carbon isotope excursion at age
Ti = 55.5488 (or 55.5372) Ma (depth 170.78 mbsf) using 3He (or orbital dating) as identified
from the surface foraminiferal δ13C carbon isotope excursion [1], with an uncertainty of ±5
ky (chosen so that a 2-standard deviation interval covers a 20-ky precessional cycle). The
at2 and af changepoints have priors ∼ N(Tf , 0.0052), centered on another potential carbon
excursion identified from the surface foram data, at age Tf = 55.4861 (or 55.5034) Ma
(depth 170.26 mbsf). The nugget has a half normal prior, ψ ∼ N(0.08, 0.22),ψ > 0.08,
with an uncertainty of ±0.2!, bounded below so that ψ must be greater than the assumed
minimum δ18O measurement error of 0.08!. The standard deviation parameter has an
inverse gamma prior σ ∼ IGamma(5, 0.5), and the correlation length parameter has a gamma
prior τ ∼ Gamma(1, 0.2).

The posterior distribution Θ|y, t of the 13 parameters, defined in Eq. 4, is estimated
by sampling the distribution using the Metropolis MCMC algorithm. The Markov chain
contains 20 million samples thinned by every 10th sample to 2 million samples. The chain
is initialized near the posterior mode so no initial equilibration samples are discarded. The
proposal distribution is multivariate normal with a hand-chosen covariance matrix. The
proposal matrix is adapted to the sample covariance of this preliminary chain and the MCMC
algorithm is run a second time, using the adapted proposal covariance, to produce a longer
final chain used in all subsequent analysis.

The resulting marginal posterior parameter distributions are shown in Figures 1 and 2.

B.2 Proxy posterior predictive distribution (proxy histories)

After the regression estimate of the statistical model parameters, the next step is to generate
random hypothetical realizations of the climate process, representing the uncertainty about
the climate time series at times between measurements. The hypothetical histories (or
realizations, or replicates) interpolate the observed data onto a regular grid.

Let the vector ỹ denote one such replicate, defined at ñ different times t̃ = {t̃j}, j =
{1, . . . , ñ} which are equally spaced, and more finely spaced than the data. A replicate vector
is drawn from the posterior predictive distribution

ỹ|t̃,y, t = [ỹ|Θ, t̃,y, t] [Θ|t̃,y, t] = [ỹ|Θ, t̃,y, t] [Θ|y, t] , (6)

that is, the distribution of proxy histories, given the times at which to interpolate and the
observed data to interpolate.

The factor Θ|y, t in the above equation is the posterior distribution, Eq. 4. The factor
ỹ|Θ, t̃,y, t is the distribution of predicted (interpolated) data, conditioned on the estimated
regression parameters, the interpolation grid, and the observed data.

The posterior distribution has already been discussed. The desired distribution for the
predicted data conditional on the observed can be obtained from their joint distribution. By
Eq. 1 the predicted and observed data are jointly distributed as

ỹ,y|Θ ∼ GP [µ(t;θ), c(t, t′;φ)] , (7)
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Figure 1: Marginal posterior probability distributions for the regression parameters esti-
mated by MCMC (solid curves) and prior distributions (dashed curves), using orbital dating.
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Figure 2: Marginal posterior probability distributions for the regression parameters esti-
mated by MCMC (solid curves) and prior distributions (dashed curves), using 3He dating.
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or
ỹ,y|Θ, t̃, t ∼ N(M ,C) , (8)

where M is the joint (block) mean vector and C is the joint (block) covariance matrix,

M = [µp µd] , C =

[
Σpp ΣT

dp

Σdp Σdd

]
. (9)

Here µd = µ = µ(t; θ) is the n-dimensional mean vector of the data and µp = µ̃ = µ(t̃; θ) is
the ñ-dimensional mean vector of the predicted time series. The (n+ ñ)× (n+ ñ) matrix C
is the joint covariance matrix of the predicted and observed data, where the n×n data-data
covariance is Σdd = Σ (as defined below Eq. 5), the ñ× ñ prediction-prediction covariance
is (Σpp)ij = c(t̃i, t̃j ;φ), and the n× ñ data-prediction covariance is (Σdp)ij = c(ti, t̃j;φ).

By standard multivariate normal theory, the desired conditional distribution appearing
in the first factor of Eq. 6 is

ỹ|Θ,y, t̃, t ∼ N(µ∗,Σ∗) , (10)

where the conditional predictive mean vector and covariance matrix are defined as

µ∗ = µ̃+ΣT
dpΣ

−1
dd(y − µ) , (11)

Σ∗ = Σpp −ΣT
dpΣ

−1
ddΣdp . (12)

The posterior predictive distribution, Eq. 6, is simulated in two steps. First a random sample
is drawn from the Markov chain of the parameter posterior Θ|y, t (thinned to 20000 sam-
ples for computational tractability). Then, conditional on the sampled model parameters
Θ and the observed data y, t, a sample is drawn from the multivariate normal predictive
distribution in Eq. 10. Because 20000 samples from the posterior chain are approximately
independent, this two-step sampling procedure is evaluated once for every member of the
thinned chain, producing 20000 hypothetical proxy histories drawn from the posterior pre-
dictive distribution.

B.3 Proxy-temperature calibration (temperature histories)

Proxy measurements are converted to temperature equivalents by calibrating against lab-
oratory measurements of isotopic shifts in planktonic foraminifera grown under controlled
temperature conditions. The calibration data are from Erez & Luz [2].

Erez & Luz derived a quadratic calibration curve T (y) by regression of temperature on
δ18O, giving the formula T = 17 − 4.52y + 0.03y2 (where, here, y refers to the difference of
δ18O between the planktonic shell carbonate and sea water). The quadratic term is fairly
negligible, and we will henceforth assume a linear relationship (T = −16.98 + 4.59y from a
regression) for simplicity.

However, regressing T on y implicitly assumes that y is the independent variable and T is
the dependent variable. In a laboratory experiment the controlled variable T is independent,
and the dependent proxy variable y is a noisy function of T . Regression of T on y can produce
suitable point estimates, but confidence intervals require more careful treatment.
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The statistical method developed to address this problem is known variously as “calibra-
tion” or “inverse regression”[3, 6]. A Bayesian approach to the problem has been developed
[4, 5]. In Bayesian calibration the proxy measurements are considered to be the sum of a de-
terministic trend function and an error term, as in ordinary regression of y on T . If y(c) and
T (c) are the nc laboratory calibration measurements of proxy and temperature, then y(c) is
assumed to be a linear function of T (c) with additive iid normal errors: yi = a0 + a1Ti + εi,
εi ∼ N(0, σ2

c ). The calibration problem is to infer a posterior predictive distribution, or
calibration distribution, for the temperature T corresponding to a new proxy measurement
y, T |y,y(c),T (c).

Hoadley [4] showed that, assuming a particular Student-t prior on T centered on the mean
of the calibration data T̄ (c), the desired calibration distribution has a simple analytic form
suitable for direct Monte Carlo sampling. This posterior is also a t distribution, centered
on the inverse calibration estimate obtained as the slope coefficient from an ordinary least
squares regression of T (c) on y(c). Rather than reproducing the notation of Hoadley here,
the reader is referred to [4] for details.

The Erez & Luz proxy calibration data are shown in Figure 3, along with the Site 690
proxy measurements (indicated on the diagonal by using the linear proxy-temperature con-
version). Also shown are the linear temperature relationship T = −16.98 + 4.59y and the
95% predictive credible intervals calculated using the Hoadley calibration method. The cal-
ibration data are shifted by −1.25! to correct for differences between modern and PETM
seawater isotopic composition; the plot is on the scale of PETM δ18O. Note that no cali-
bration data exist for δ18O above -0.79! (temperatures below 13.99 ◦C), whereas there are
Site 690 data up to 0.39! (temperatures down to 9.45 ◦C), so low-temperature PETM data
must be extrapolated out of the support of the calibration data.

The two-step proxy history procedure described in the previous section first draws a
sample of the uncertain parameters from their posterior distribution, then draws a random
proxy history from the conditional predictive distribution. The proxy-temperature calibra-
tion procedure adds a third step: for each point in the proxy history time series, a random
temperature is drawn from the calibration distribution, giving a possible temperature corre-
sponding to that proxy value. This produces a random temperature history. Applying the
proxy-temperature calibration to the posterior predictive distribution of y in the previous
step gives 20000 samples of the posterior predictive distribution of T , i.e., 20000 hypothetical
“climate histories”.

B.4 Trend estimates

Samples from the posterior predictive distribution of temperature can be treated, in a
Bayesian way, as “parametric bootstrap” replicates from which ordinary regression estima-
tors are sampled. Assuming a 21-point sliding window of width 1 ky, ordinary least squares
(OLS) trend estimators are calculated along the temperature history as the time window is
moved across the range of the data. These estimators are computed for each history in the
posterior predictive distribution, giving a posterior estimate for the uncertainty in the short
term (1-ky) temperature trend, reported as 2.5%/97.5%-quantile Bayesian credible intervals.
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Figure 3: Proxy calibration data, along with Site 690 proxy data, and calibration mean and
95% predictive intervals.
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B.5 Dating uncertainty

The analysis described in the previous sections is performed twice, assuming two different
age models: extraterrestrial 3He and orbital dating. An “errors in variables” (EIV) method
is also applied to introduce uncertainty about the dates of individual data points, within a
given age model.

The EIV method assumes that the date calculated for the proxy data at a given depth is
a random variable distributed about a latent (unknown) “true” date. The Bayesian analysis
treats each of these latent dates as an uncertain parameter whose posterior probability
distribution is to be estimated. Because there are 63 unique depths, or dates, the EIV
analysis adds 63 new parameters to be estimated in the Monte Carlo simulation, jointly
with the 13 regression and covariance parameters already estimated (see Appendix B.1).

Mathematically, the calculated age for a given depth is ti is assumed to be normally
distributed about the latent age Ti with an uncertainty of ±5 ky, ti ∼ N(Ti, 0.0052). The
joint posterior distribution of the uncertain regression/covariance parameters and ages is

Θ,T |y, t ∝ [y, t|Θ,T ] [Θ,T ] = [y, t|Θ,T ] [Θ] [T ] , (13)

assuming prior independence between the regression parameters and latent ages. The likeli-
hood factorizes conditionally,

y, t|Θ,T = [y|t,Θ,T ] [t|Θ,T ] = [y|Θ,T ] [t|Θ,T ] , (14)

assuming that the distribution of the proxy data is conditionally independent of the measured
ages assuming the true ages are known, y|t,T = y|T , and that the distribution of measured
ages depends only on the true ages, t|Θ,T = t|Θ. The first factor is the likelihood in
Eq. 5, and the second factor is an iid normal distribution about the true ages Ti, so the
errors-in-variables likelihood is

p(y, t|Θ,T ) =
1√

(2π)n detΣ
exp

[
−1

2
(y−µ)TΣ−1(y−µ)

]
× 1√

(2π)nσn
exp

[
−1

2

n∑

i=1

(ti−Ti)
2/σ2

a

]
,

(15)
where µ and Σ depend implicitly on Θ. The first factor is the proxy data likelihood and
the second factor is the proxy age likelihood. To perform the errors in variables regression,
this likelihood, not Eq. 5, is used in the Bayesian posterior, and the Markov chain simulates
distributions for not only the regression parameters Θ = (θ,φ) but also the latent ages T .

The resulting age estimates, for the orbital chronology, are shown in Figure 4.

B.6 Hierarchical modeling

The approach considered here assumes that the variance and correlation of natural temper-
ature variability is constant in time and does not vary across changepoints. One statistical
approach that allows the estimate of natural variability to change with time, and which
does not propagate the effect of outliers from one period to another, is to calculate separate
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data, using orbital chronology.
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variance estimates for each of the five periods considered (the three gradual periods and two
abrupt periods). This is equivalent to considering five independent error processes, one for
each period of time. However, since the error processes are independent, the sample paths
(temperature histories) will not join continuously together: temperatures on either side of
a changepoint boundary will be independent of each other. This approach also may lead
to spurious variance estimates for the two periods of rapid change, because they contain
few data points and are susceptible to small-sample fluctuations. The limitations of this
approach are particularly problematic since the period of most interest (the onset of the
PETM) occurs during an abrupt period, near the changepoint boundaries.

Another approach to weakening the stationarity assumption is to build a hierarchical
random effects model, treating the variance estimates from different periods as different
but related. This approach assumes that the variance in each of the five periods is a small
random perturbation from a common underlying variance. This ameliorates the small-sample
estimation problem during the brief abrupt periods, since the estimates for those periods will
borrow strength from the estimates in other periods, drawing spurious fluctuations towards
the estimated common variance. However, it still produces temperature histories that are
discontinuous across changepoint boundaries, and are therefore questionable when the rates
near a changepoint (such as the PETM event) are of interest. A non-stationary statistical
model that produces sample paths that are continuous across changepoint boundaries would
be even more complex.

Although these two alternate approaches have problems that may preclude their use
in estimating PETM peak warming rates, limited computer experiments with both non-
stationary approaches [results not shown] do not appear to considerably affect peak warming
rate estimates during the event. This is possibly because the Gaussian process conditioning
step forces the temperature histories to pass close to the data regardless of the underlying
method for variance estimation. However, as argued above, the stationary variance assump-
tion may inflate the uncertainty about the estimated rates, without necessarily altering the
rate estimates themselves. For the results reported in this work, we use only the station-
ary covariance approach (an error variance common to all periods), and leave the alternate
approaches for future studies.
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